На что влияет ttl. Что такое TTL в пинге

Здравствуйте друзья. В данной статье мы постараемся разобраться, что такое TTL и чем он полезен для рядового пользователя.
Как известно, крупные игроки мобильного рынка вслед за введением и активным пиаром безлимитных опций и пакетов на смартфонах столкнулись с тем, что пользователи начали раздавать свой интернет для других устройств, что заметно повысило нагрузку на сети.

Что такое ttl — определение

TTL – это всего лишь время жизни пакета данных в протоколе . А вот актуальность манипуляций со значениями данного пакета данных - в настоящее время весьма высока.
Следующий шаг операторов - ограничение возможности раздачи для таких абонентов и различные иные меры.
И большинство так или иначе столкнулись с данной проблемой и сейчас активно занимаются поиском информации о том, как можно обойти ограничения на раздачу интернета со своих смартфонов.
Контроль трафика операторы связи обычно производят посредством мониторинга за TTL пакетами и ловят неподготовленных пользователей при раздаче трафика и несанкционированных подключений мобильных устройств к смартфону пользователя.

Прочитав данную статью вы сможете узнать, каким образом и с помощью каких уловок можно обойти ограничение на раздачу трафика со своего смартфона, как провайдер узнает о нелегальной раздаче пользователем интернет с помощью ip или же usb.

Принцип работы TTL

В настоящее время абсолютно безлимитных тарифов не предоставляет не один сотовый оператор. Есть весьма разнообразные линейки тарифов, но все они содержат то или иное ограничение. Например, можно пользоваться интернетом только с одного смартфона без ограничения скорости, но стоит вам создать Wi-Fi точку раздачи и попытаться подключить стороннее устройство, как оператор этот факт обязательно зафиксирует и пользователю будет предложено подключить устройство по определенному тарифу либо произвести доплату помегабайтно.


Многие задаются вопросом, что же позволяет операторам связи контролировать количество подключенных устройств, предполагают введение каких - то невиданных технологий. Однако ларчик открывается достаточно просто. Оператор всего лишь проводит контроль ttl.

НАПРИМЕР: вы захотели включить на вашем устройстве режим модема. Следовательно TTL которые исходят от вашего устройства будут на единицу меньше чем от смартфона, на что отреагирует оператор связи и далее по цепочке.


Обойти данный контроль нам поможет регулировка TTL

.
Давайте попробуем разобрать принцип работы более наглядно и посмотри на схемы :

  • В данном случае устройство работает непосредственно с оператором без раздачи интернета

Размер TTL у мобильных устройств на базе Ios и андроид обычно равен 64. в том случае, если вы попытаетесь включить раздачу интернета на другие устройства, то пакеты TTL, которые будут направлены оператору получат значение TTL=64


Теперь рассмотрим вариант с раздачей интернет а на другие устройства с помощью Wi-Fi и USB .
Ниже на картинке предложена данная схема раздачи. Что же мы имеем в итоге?
В том случае, если вы подключили раздачу интернета при помощи Wi-Fi, Bluetooth или же USB, то в данном случае пакеты которые раздает ваше устройство получают значение так же TTL=64, а вот от ноутбука или компьютера до устройства, с которого осуществляется раздача интернета данные пакеты уже приходят со значением TTL=128.

Данное значение TTL=128 является по умолчанию установленным в Windows. Далее они теряют единицу значение и уже с TTL=127 направляются через раздающее устройство провайдеру.
А пакеты от телефона, которые раздающее устройство принимает со значением TTL=64 теряют единицу и направляются оператору со значением TTL=63. Это сотовому оператору может наглядно дать знать о том, что вы пытаетесь раздать интернет на другие устройства, сравнивая разные поступающие значения TTL от одного передающего девайса, и принять соответствующие меры.


Теперь давайте рассмотрим вариант, при котором мы откорректировали значение передающего и принимающего TTL на всех устройствах выровняв их.
Для того что бы оператор не понимал, что у вас происходит раздача интернета, не вычислил запуск тетеринга, вам следует произвести корректировку значения TTL на устройстве, с которого осуществляется раздача трафика таким образом, что бы все поступающие и отдающиеся пакеты по умолчанию имели размер, которое указано по умолчанию на раздающем устройстве.

Выше на картине приведен наглядный пример подобной корректировки и схема взаимодействия устройств .

По умолчанию выставлено значение TTL=63 Устройство на базе IOS и андроид имеет значение TTL=64, но проходя через передающее устройство значение уменьшается на единицу и становится равным TTL=63
Получив подобный пакет оператор не видит разницы и считает, что раздача не производится, так как разница размеров пакетов отсутствует.

А абонент может осуществлять раздачу интернета без дополнительных затрат на любые свои устройства.


Так же и в случае, если вы ходите раздавать вайфай на ноутбук или компьютер. ПК по умолчанию имеет значение TTL=128. Мы корректируем его на значение 64. Посредством представленной схемы, вы можете производить раздачу интернета не только на мобильные устройства или смартфону, но так же и на ПК и ноутбуки, не опасаясь повышения оплаты за использованный трафик и санкции от оператора, так как итоговые пакеты от раздающего устройства уйдут к оператору со значением TTL=63.
И что не говори, подобная схема может считаться идеальным решением по обходу ограничения в раздаче интернета, так как неважно, какой из устройств подключается к интернету, размер TTL будет равным для всех исходящих пакетов для оператора сотовой связи. И подойдет даже тем, кто не может на своем устройстве изменить размер TTL (SMART TV или же игровые консоли).

TTL — что это такое? TTL расшифровывается как Time to Live. То есть время жизни пакета, отведённое ему в момент перехода от начального узла к конечному. В стандарте IPv4 для отражения TTL выделено восьмиразрядное поле в заголовке. Проходя через многочисленные узлы к адресату, значение пакета каждый раз уменьшается на 1 единицу. Это сделано с целью ограничить время его присутствия в узлах конкретным числом. А это, в свою очередь, позволяет избежать перегрузок в сетях.

Что произойдёт, если значение TTL достигнет нуля? Пакет исчезнет, и отправитель получит сообщение о том, что время жизни его истекло, а значит, нужно попытаться снова. Максимальное значение, которое способно отразить восьмиразрядное поле, составляет 255. Для операционных систем есть значения по умолчанию. Например TTL в Windows равен 128, а в Linux и производных — Mac, Android — 64.

В среде DNS имеется свой TTL, и он отражает актуальность кэшированных данных. Но речь в статье будет не о нем.

Для чего применяется TTL и в каких сферах

Время жизни пакета активно используют различные провайдеры интернета, например Yota. Тем самым они пытаются ограничить доступ к потреблению чрезмерного трафика при раздаче Wi-Fi. Это происходит за счет того, что пакет, переходя от устройства, получающего трафик на раздающее, уменьшает TTL, в итоге к провайдеру приходит значение меньше или в случае с Windows больше ожидаемого.

Для примера можно описать процесс работы смартфона на базе "Андроида". Устройство отправляет запрос на получение данных с определенного сайта. Вместе с ним посылается TTL, значение которого 64. Провайдер знает, что это стандартная для данного устройства цифра времени жизни пакета, поэтому свободно позволяет ему получать доступ к Сети.

Теперь устройство начинает раздавать Wi-Fi и становится своего рода маршрутизатором. Подключившийся смартфон работает на платформе Windows, и его TTL, пройдя через раздающее устройство, будет 127. Провайдер встретит этот пакет и поймет, что его интернет раздается. Поэтому и заблокирует содиненение.

Возможности изменения TTL на различных устройствах

Изменение значения времени жизни пакета может пригодиться для обхода блокировки трафика провайдером. Например, если отключили кабельное подключение, а пользователю нужно срочно выйти в интернет с компьютера. Тогда смартфон становится точкой доступа и выводит ПК в сеть.

Стоит отметить, что некоторые провайдеры блокируют доступ не только по TTL, но и отслеживают посещение сайтов. И если ресурс никак не связан со смартфоном, т. е. не нужен ему, соединение обрывается.

Изменить TTL можно несколькими способами, которые будут описаны далее.

Изменение TTL на устройствах на платформе "Андроид"

Самым простым способом изменения времени жизни пакета на устройствах "Андроид" будет использование специализированного программного обеспечения. Например, очень эффективный продукт — TTL Master. Он может изменить время жизни пакета раздающего аппарата на то, которое получается в результате прохода данных. Например, при раздаче Wi-Fi на устройство с Windows нужно установить значение 127, а на Андроид или Linux — 63.

Программа бесплатна, и ее легко можно найти в официальном магазине Google Play. Однако для ее функционирования требуются права root на устройстве.

Интерфейс программы прост — в верхней части отображено текущее значение параметра. Чуть ниже расположены заготовки для операционных систем Windows и остальных. Также можно установить желаемое значение вручную. Чуть ниже находится кнопка с возможностью перейти из приложения сразу в настройки модема. В некоторых версиях доступно решение через iptables, для чего есть определённый пункт.

В настройках есть возможность установить запуск и смену времени жизни автоматически при загрузке устройства. Некоторые версии "Андроида" позволяют произвести сразу после смены значения запуск точки доступа. Есть поддержка русского языка.

Приложение постоянно развивается и совершенствуется. Имеется профиль на github, в котором все желающие могут ответвиться и добавлять свои возможности в проект. Если их примут разработчики, то они войдут в последующий релиз.

Также можно попробовать метод изменения системных файлов вручную для смены значения времени жизни пакета. Для этого понадобятся root-права. Сначала надо перейти в режим полета, то есть сделать так, чтобы телефон потерял Сеть.

Затем воспользоваться любым проводником, который способен редактировать файлы. В нем надо перейти по пути proc/sys/net/ipv4. В этом каталоге интересует файл с именем ip_default_ttl. Он содержит значение 64, которое нужно изменить на 63.

Далее нужно вывести телефон из режима полета, чтобы он снова зарегистрировался в Сети. Теперь можно раздать беспроводной интернет и попробовать подключить устройство на базе iOS или "Андроида", то есть с TTL 64.

Если необходимо использовать в качестве одного из клинетов ПК с Windows, то нужно будет установить постоянное значение времени жизни пакета способом, описанным ниже.

Смена TTL на компьютере с операционными системами Windows

Если нужно раздать интернет со смартфона под управлением Windows, то придется немного подкорректировать значения реестра. Этот способ будет актуален, когда телефон не имеет рут и обойти блокировку на нем не получается.

Запуск реестра в линейке операционных систем можно осуществить через пункт меню «Пуск» «Выполнить». В нем надо ввести Regedit и нажать ОК. В открывшемся окне появятся две области. В левой находится древовидная структура, а в правой - значения. Нужно найти ветку HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\Tcpip\Parameters. Для Windows 8 Tcpip может быть заменён на Tcpip6.

В окне со значениями надо создать новое. Это делается щелчком правой кнопкой мыши. В контекстном меню выбирается «Создать», затем новый параметр DWORD, и присваивается название Default TTL. Что это? Это будет статичный параметр для постоянного значения времени жизни. Затем снова щелчок правой кнопкой, и выбрать «Изменить». Тип счисления должен быть десятичным, а значение — 65. Таким образом, система будет передавать время жизни пакета в 65, то есть на один больше чем у "Андроида". То есть, проходя сквозь смартфон, он потеряет одну единицу, и провайдер не заметит подвоха. После внесённых изменений нужно перезагрузить компьютер.

Теперь можно раздавать интернет на "Андроид", не используя особых программных средств и приспособлений.

Изменение на Linux

Как осуществляется смена TTL на компьютере с операционными системами Linux? Для Linux смена времени жизни пакета меняется одной строкой в терминале: sudo iptables -t mangle -A POSTROUTING -j TTL --ttl-set 65

Изменение времени жизни пакета на модемах

Изменить TTL модема можно с помощью смены IMEI. Это такой идентификационный код, уникальный для каждого устройства, имеющего доступ к сотовым сетям. Вся проблема в том, что универсального способа нет. Это связано с тем, что для каждого отдельно взятого модема должна быть своя прошивка, которая сменит IMEI.

На сайте 4PDA имеется подборка решения для смены времени жизни на модемах от разных производителей и моделей. Также там можно найти подробные реализации данной задачи.

Смена времени жизни пакета на iOS

С помощью твика TetherMe можно сменить на iOS TTL. deb-приложение, которое разблокирует режим модема на устройствах с iOS на борту. Дело в том, что Apple позволяет некоторым операторам сотовой сети блокировать функцию "Режим модема" на уровне симки. Данное приложение даёт возможность его активировать и использовать телефон в качестве модема.

Изменение TTL в MacOS

MacOS по умолчанию обладает временем жизни 64. Если требуется его изменить, нужно в терминале ввести команду: sudo sysctl -w net.inet.ip.ttl=65.

Однако при таком подходе значение после перезагрузки снова изменится на 64. Поэтому необходимо выполнить ряд манипуляций. В корне диска существует каталог etc. Он скрытый, но в него нужно попасть. Там создаётся файл sysctl.conf. В нем нужно прописать всего одну строчку — net.inet.ip.ttl=65. Ну и естественно, сохранить.

Для отображения данной скрытой папки в Findere надо перейти в основной диск и нажать сочетание клавиш cmd+shift+G. В появившемся окне вводится имя искомой папки, после чего она найдется.

Выводы

Существует такое понятие, как USB TTL конвертер. Однако к контексту статьи он не имеет никакого отношения, и не стоит путать его с временем жизни пакета. USB TTL конвертер — своего рода переходник для создания соединений между устройствами USB и логикой TTL.

В статье было подробно объяснено про TTL — что это такое и для чего нужен. Несколько способов его изменения позволят обойти ограничение по блокировке трафика на некоторых провайдерах. Это даёт возможность использовать интернет повсеместно.

Реализация на разных устройствах отличается, можно сделать это как с помощью программных средств, так и изменяя системные файлы вручную. Некоторые модемы придётся прошивать, причём под каждый свою версию ПО.

Данными инструкциями можно обойти блокировку многих провайдеров, предоставляющих доступ в интернет посредством сотовой сети.

TTL — что такое? Время жизни (TTL) — это механизм, используемый для ограничения продолжительности жизни данных в сети. Данные отбрасываются, если истекает заданное значение. Идея создания заключается в том, чтобы предотвратить распространение любого пакета данных на неопределенный срок.

Определение

Что такое TTL? Термин «время жизни» относится к количеству времени или «перескокам», когда пакет устанавливается в сети, прежде чем отбрасывается маршрутизатором. Технология также используется в других контекстах, включая кэширование CDN и кэширование DNS.

TTL является значением в пакете IP-протокола, который сообщает сетевому маршрутизатору, был ли пакет слишком длинным. В IPv6 поле в каждом пакете было переименовано. TTL устанавливается в восьмом двоичном разряде в заголовке пакета и используется для предотвращения бесконечного распространения пакетов в интернете или в другой сети. При пересылке IP-пакета маршрутизаторы должны уменьшать TTL по меньшей мере на один порядок. Если поле пакета достигло нуля, маршрутизатор, обнаруживающий его, отбрасывает пакет и отправляет сообщение ICMP (протокол управления через интернет) обратно на исходный узел.

Как работает технология?

Когда пакет информации создается и отправляется через интернет, существует риск того, что он будет продолжать переходить с маршрутизатора на маршрутизатор на неопределенный срок. Чтобы уменьшить эту возможность, пакеты создаются с истечением срока действия, называемым пределом времени жизни. Пакет TTL также может быть полезен при определении того, как долго он находился в обращении, и позволяет отправителю получать информацию о пути пакета через интернет.
Каждый пакет имеет место, где он хранит числовое значение, определяющее, насколько долго он должен продолжать перемещаться по сети. Каждый раз, когда маршрутизатор получает пакет, он вычитает одно значение из счета TTL и затем передает его в следующее место в сети. Если в любой момент счетчик TTL равен нулю после вычитания, маршрутизатор отбросит пакет и отправит сообщение ICMP обратно на исходный узел.

Техническое описание процесса

IP TTL устанавливается первоначально системой, отправляющей пакет. Его можно разместить в любое значение от 1 до 255. Разные операционные системы устанавливают разные значения по умолчанию. Каждый маршрутизатор, который получает пакет, вычитает не менее 1 из счета. Если счетчик остается больше 0, маршрутизатор перенаправляет пакет, в противном случае он отбрасывает его и отправляет сообщение управления интернет-протоколом (ICMP) обратно на исходный узел, что может вызвать повторную отправку.

Точка ограничения TTL/hop должна поддерживать непрерывный поток пакетов, застрявших в циклах маршрутизации (возможно, из-за некорректных таблиц с данными и засорения сетей). В облаках Multiprotocol Label Switching (MPLS) TTL копируется из IP TTL, когда IP-пакет входит в облако. При выходе значение MPLS TTL копируется в соответствующее поле до тех пор, пока оно меньше значения в поле.

Изменяем TTL

Утилиты ping и traceroute используют значение TTL, чтобы попытаться достичь заданного хост-компьютера или проследить маршрут до этого хоста. Traceroute отправляет поток пакетов с последовательно более высокими TTL, поэтому каждый будет отброшен в свою очередь следующим скачком (маршрутизатором) на пути до места назначения: первый пакет имеет TTL одного и отбрасывается первым маршрутизатором, второй — TTL из двух и отбрасывается следующим маршрутизатором. Время между отправкой пакета и получением ответного ICMP-сообщения используется для вычисления каждого последующего времени перемещения.

  • 0 — хостом;
  • 1 — подсетью;
  • 32 — сайтом;
  • 64 — регионом;
  • 128 — континентом;
  • 255 — неограничен.

Кэширование TTL и DNS

Что такое TTL в контексте DNS? Значение сообщает локальным серверам, как долго запись должна храниться локально прежде, чем новая копия записи будет восстановлена ​​из DNS. Хранилище записей известно, как DNS-кэш, а акт хранения записей называется кэшированием.

Термин «время жизни» также используется для описания времени, в течение которого запись DNS может быть возвращена из кэша. В этом контексте USB TTL представляет собой числовое значение, заданное в записи DNS на авторитетном DNS-сервере для домена, определяющее количество секунд, за которое сервер кэширования может предоставить свое значение для записи. Когда прошло нужное количество секунд с момента последнего обновления, кэширующий сервер снова выйдет на сервер и получит текущее (и, возможно, измененное) значение для записи. Характерные особенности процесса кеширования, где TTL:

  • Является частью системы доменных имен.
  • Устанавливается авторитетным сервером имен для каждой записи ресурса.
  • Используется для целей кэширования. Например, значение TTL для www.dnsknowledge.com составляет 86400 секунд (24 часа). Чем выше TTL записи, тем дольше будет кэшироваться информация, и тем меньше потребуется запросов, которые клиент должен будет сделать, чтобы найти домен.
  • Используется разрешающим сервером имен для ускорения решения путем локального кэширования результатов.

TTL — что такое и как это работает?

В HTTP время жизни отображает количество секунд, для которых может быть возвращен кэшированный веб-контент до запроса сервера. Значение по умолчанию определяется настройками на веб-сервере, но может быть переопределено тегами управления кэшем, которые определяют, какие типы серверов могут кэшировать данные.

Пакет является фундаментальной единицей информационного транспорта во всех современных компьютерных сетях и в других сетях связи. Маршрутизатор представляет собой электронное устройство или программное обеспечение сетевого уровня, которое соединяет локальные или глобальные сети и пересылает пакеты между ними.

Общие значения

Обычно значение составляет 86400 секунд, что составляет 24 часа. Это хорошая отправная точка для большинства записей. Однако вы можете установить более высокий TTL Patch для записей MX или CNAME, поскольку они будут меняться очень редко. Если ваш сервис имеет решающее значение, рекомендуется установить TTL на 1 час (3600 секунд).

Случаи применения

Помимо трассировки пакетов маршрутов через интернет, TTL используется в контексте кэширования информации за определенный период времени. Вместо того, чтобы измерять время в перелетах между маршрутизаторами, каждый из которых может занимать определенное количество часов, некоторые случаи использования сети работают более традиционным образом.

CDN обычно использует TTL PL, чтобы определить, как долго кэшированный контент должен обслуживаться с пограничного сервера CDN, прежде чем новая копия будет извлечена с исходного сервера. Правильно устанавливая время между загрузками сервера происхождения, CDN может обслуживать обновленный контент без непрерывного распространения запросов на исходное. Эта оптимизация позволяет CDN эффективно обслуживать контент ближе к пользователю, уменьшая требуемую пропускную способность от источника.

В контексте записи DNS TTL представляет собой числовое значение, определяющее, как долго сервер кэша DNS может обслуживать запись, прежде чем обратиться к авторитарному DNS-серверу и получить новую копию записи.

Совсем недавно на наших страницах появлялся обзор флагманского устройства – беспроводного маршрутизатора ASUS . Отличительной особенностью модели было наличие восьми LAN-портов. Такое количество проводных интерфейсов может потребоваться при наличии большого числа устройств, имеющих проводное подключение: стационарные компьютеры, сетевые хранилища и МФУ, видеоплееры и так далее. Однако столько техники обычно бывает лишь у гиков и компьютерных энтузиастов. Обычным пользователям зачастую даже четырёх стандартных проводных портов бывает слишком много. Сегодня в нашу сетевую лабораторию попала на тестирование модель, обладающая двумя LAN и одним WAN-интерфейсом. ASUS RT-AC53 – поистине бюджетный маршрутизатор.

Итак, скорее приступим!

Внешний вид и аппаратная платформа

Беспроводной маршрутизатор ASUS RT-AC53 выполнен в чёрном пластиковом корпусе, габариты которого составляют 320х190х35 мм (без учёта антенн), при массе всего в 285 грамм. Для своей работы устройство требует внешний блок питания (поставляется в комплекте) со следующими характеристиками: 12 В и 1 А.

Верхняя панель матовая, состоящая из двух частей. На ней расположено название производителя и основные параметры изделия, а также светодиоды, отображающие состояние проводных и беспроводных интерфейсов устройства, а также наличие питания.

Боковые поверхности ничем не примечательны, здесь лишь расположена вентиляционная решётка.

На нижней панели маршрутизатора можно обнаружить наклейку с краткой информацией о модели, четыре резиновые ножки, два углубления для ещё двух ножек, два технологических отверстия для крепления устройства к стене, а также, естественно, вентиляционную решётку.

Задняя панель несёт на себе три несъёмные поворотные антенны, три интерфейса Gigabit Ethernet (один WAN и два LAN), разъём питания с кнопкой включения/выключения устройства, кнопку WPS и утопленную кнопку Reset.

Заглянем теперь внутрь корпуса. Аппаратная начинка беспроводного маршрутизатора ASUS RT-AC53 представлена одной зелёной текстолитовой платой, основные элементы на которой размещены с одной стороны. Исключение составляет лишь модуль флеш-памяти GigaDevice 25Q64CSIG, объём которой составляет 8 Мбайт.

Функции проводного коммутатора Gigabit Ethernet здесь выполняет микросхема Realtek RTL8367RB . Центральный процессор представлен чипом MediaTek MT7620A , работающим на частоте 580 МГц. Такой процессор мы уже встречали ранее в моделях ASUS RP-AC52 и RT-AC51U . Функции оперативной памяти выполняет DDR2 модуль Winbond , объём которого составляет 64 Мбайта. Поддержка беспроводного диапазона 2.4 ГГц (2T2R) встроена в процессор, тогда как для диапазона 5 ГГц используется отдельный беспроводной чип MediaTek MT7610EN.

На этом мы завершаем беглое рассмотрение аппаратной начинки маршрутизатора и переходим к изучению его программных возможностей.

Начальная настройка и обновление прошивки

При первом подключении к беспроводному маршрутизатору ASUS RT-AC53 пользователю необходимо будет произвести первоначальную настройку устройства. Сама первоначальная настройка предельно проста – требуется лишь указать основные настройки подключения к сети Интернет, задать пароль администратора, выбрать режим работы.

Обновление микропрограммного обеспечения традиционно для всех беспроводных маршрутизаторов компании ASUS и не требует от пользователя никаких специальных знаний. Для смены прошивки требуется обратиться ко вкладке «Обновление микропрограммы» меню «Администрирование» и указать файл, содержащий новую версию микропрограммного обеспечения. Стоит также отметить, что обновление может быть произведено и в полуавтоматическом режиме, для чего, естественно, требуется наличие подключения к сети Интернет.

Весь процесс обновления микропрограммного обеспечения обычно занимает не более трёх минут (без учёта времени, необходимого на загрузку прошивки из глобальной сети).

Здесь же, на наш взгляд, уместно будет упомянуть об утилитах, поставляемых вместе с маршрутизатором, потому что обычно потребность в них возникает именно в процессе первоначальной настройки устройства. Итак, в комплекте с ASUS RT-AC53 распространяются три утилиты: Device Discovery, Firmware Restoration и ASUS Printer Setup. Признаться, мы не очень понимаем, для чего вендор предлагает использовать утилиту ASUS Printer Setup, так как модель RT-AC53 не обладает USB-портами.

С помощью утилиты Device Discovery пользователь может обнаружить беспроводной маршрутизатор ASUS RT-AC53 в своей локальной сети.

Если в процессе обновления прошивки произошёл сбой, RT-AC53 переходит в режим восстановления, опознать который можно по медленно мигающему индикатору питания. К сожалению, тестируемый беспроводной маршрутизатор не имеет встроенного в загрузчик веб-сервера, поэтому восстановить прошивку можно либо с помощью утилиты Firmware Restoration, либо вручную, выгрузив прошивку на устройство по протоколу TFTP.

Стоит также отметить, что находясь в режиме восстановления, RT-AC53 не отвечает на эхо-запросы по протоколу ICMP (ping).

C:\>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.1.1:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

Однако и с восстановлением по TFTP не всё так просто. Сначала мы просто пытались передать файл с новой прошивкой на маршрутизатор, но безуспешно.

C:\>
Timeout occurred
Connect request failed

Тогда мы запустили Wireshark и стали анализировать трафик, которым обмениваются тестовый ПК и маршрутизатор. Оказалось, что периодически RT-AC53 отправляет ARP-запрос об адресе 192.168.1.75.

Мы изменили адрес на тестовом ПК на 192.168.1.75/24, после чего передача файла с микропрограммным обеспечением произошла успешно. Через несколько секунд после получения файла RT-AC53 самостоятельно перезагрузился, используя новую прошивку.

C:\>tftp -i 192.168.1.1 put c:\RT-AC53_3.0.0.4_380_6038-g76a4aa5.trx
Transfer successful: 7475296 bytes in 2 second(s), 3737648 bytes/s

На этом мы завершаем раздел, посвящённый обновлению прошивки и первоначальным настройкам, и переходим к рассмотрению возможностей веб-интерфейса устройства.

Обзор веб-интерфейса

Доступ к веб-интерфейсу беспроводного маршрутизатора ASUS RT-AC53 можно получить с помощью любого современного браузера. Веб-интерфейс устройства традиционно выполнен в серо-чёрных тонах и доступен на тринадцати языках.

Мы не станем подробно описывать все возможности модели, но остановимся на наиболее интересных.

Модель RT-AC53, равно как и все остальные современные беспроводные устройства ASUS, поддерживает создание до трёх гостевых сетей в каждом беспроводном диапазоне. Соответствующая настройка доступна в пункте меню «Гостевая сеть».

Настройки, отвечающие за обеспечение качества обслуживания, собраны в пункте меню «Диспетчер трафика». Здесь пользователь может вручную ограничить скорость передачи данных для определённых узлов, либо воспользоваться традиционной службой QoS. Также с помощью данного пункта меню можно получить график загрузки проводных и беспроводных интерфейсов.

При необходимости ограничить время пользования глобальной сетью, следует обратиться к пункту меню «Родительский контроль».

Настройки беспроводной сети, собранные во вкладках пункта меню «Беспроводная сеть», традиционны для большинства беспроводных маршрутизаторов ASUS, поэтому мы не станем на них останавливаться.

Вкладка «Switch Control» пункта меню «Локальная сеть» привлекла наше внимание. Кроме опции включения/отключения аппаратного ускорения NAT, здесь присутствует возможность ограничения по скорости определённого (обычно нежелательного) трафика.

ASUS RT-AC53 для подключения к провайдерам может использовать статические и динамические IP-адреса, а также следующие туннели: PPTP, L2TP и PPPoE. Соответствующие настройки доступны на вкладке «Подключение» пункта меню «Интернет». Пожалуй, пару слов здесь стоит сказать об опциях «Расширить значение TTL» и «Подменить значение LAN TTL». Обе опции предназначены для упрощения работы пользователя в сетях операторов, ограничивающих абонентов по количеству подключённых устройств. Опция «Подменить значение LAN TTL» позволяет отправлять пакеты в интернет с фиксированным значением поля TTL в заголовке IP-пакета, тогда как опция «Расширить значение TTL» влияет на трафик в обратном направлении, позволяя не отбрасывать те пакеты, TTL которых должен был обнулиться при прохождении через роутер.

К сожалению, функция Dual WAN моделью RT-AC53 не поддерживается.

Настройки параметров работы протокола IPv6 собраны в одноимённом пункте меню.

Беспроводной маршрутизатор ASUS RT-AC53 обладает встроенными VPN-клиентом и сервером. В отличие от старших моделей поддержка протокола OpenVPN здесь отсутствует.

Фильтрация трафика производится с помощью вкладок пункта меню «Брандмауэр».

Выбор режима работы устройства производится с помощью вкладки «Режим работы» пункта меню «Администрирование».

На этом мы завершаем беглый обзор основных возможностей веб-интерфейса устройства и переходим к интерфейсу командной строки.

Интерфейс командной строки

Управление доступом к командной строке устройства производится с помощью вкладки «Система» меню «Администрирование». Стоит отметить, что доступ поддерживается как с помощью протокола Telnet, так и SSH.

Для доступа к командной строке используется та же пара логин-пароль, что и для доступа к веб-интерфейсу маршрутизатора. Микропрограммное обеспечение тестируемой модели построено на базе операционной системы Linux 2.6.36 с использованием BusyBox 1.17.4.

RT-AC53 login: admin
Password:
admin@RT-AC53:/tmp/home/root# cd /
admin@RT-AC53:/# uname -a
Linux RT-AC53 2.6.36 #1 Fri Sep 23 12:05:55 CST 2016 mips GNU/Linux
admin@RT-AC53:/# busybox
BusyBox v1.17.4 (2016-09-23 12:02:33 CST) multi-call binary.
Copyright (C) 1998-2009 Erik Andersen, Rob Landley, Denys Vlasenko
and others. Licensed under GPLv2.
See source distribution for full notice.
Usage: busybox ...
or: function ...
BusyBox is a multi-call binary that combines many common Unix
utilities into a single executable. Most people will create a
link to busybox for each function they wish to use and BusyBox
will act like whatever it was invoked as.
Currently defined functions:
[, [[, arp, ash, awk, cat, chmod, chown, chpasswd, cmp, cp, crond, cut, date, dd, df,
dirname, dmesg, echo, egrep, env, ether-wake, expr, fgrep, find, free, grep, gunzip,
ifconfig, insmod, ionice, kill, killall, klogd, ln, logger, login, ls, lsmod, md5sum,
mdev, mkdir, mknod, modprobe, more, mount, mv, netstat, nice, nohup, nslookup, pidof,
ping, ping6, printf, ps, pwd, readlink, renice, rm, rmdir, rmmod, route, sed, sh, sleep,
sort, strings, sync, syslogd, tar, telnetd, test, top, touch, tr, traceroute, traceroute6,
udhcpc, umount, uname, uptime, usleep, vconfig, vi, watch, wc, which, zcat, zcip

С помощью команды ps посмотрим, какие процессы запущены на устройстве в данный момент. Утилита top отобразит данные по текущей работе запущенных процессов. Результаты работы указанных утилит мы поместили в отдельный файл .

Содержимое каталогов /bin, /sbin, /usr/bin и /usr/sbin, вместе с выводом скрипта sysinfo, мы представляем в отдельном файле . Так, например, в каталоге /sbin расположена утилита tcpcheck, позволяющая проверить, открыт ли определённый TCP-порт на определённом узле.

Admin@RT-AC53:/# tcpcheck
usage: tcpcheck
admin@RT-AC53:/# tcpcheck 10 192.168.1.1:23
192.168.1.1:23 is alive
admin@RT-AC53:/# tcpcheck 10 192.168.1.2:23
192.168.1.2:23 failed

Перейдём теперь в каталог /proc и посмотрим, какие файлы здесь размещены, а также выясним время работы операционной системы и её среднюю загруженность, получим информацию об установленном процессоре и количестве оперативной памяти. В принципе, время работы и среднюю загруженность системы также можно получить с помощью системного вызова uptime.

Admin@RT-AC53:/# cd /proc
admin@RT-AC53:/proc# ls
1 193 267 bus kpagecount stat
10 194 3 cmdline kpageflags sys
11 196 30 cpuinfo loadavg sysrq-trigger
115 2 301 crypto locks sysvipc
116 20 306 devices meminfo timer_list
12 201 4 diskstats misc tty
13 204 41 driver modules uptime
135 208 430 execdomains mounts version
136 21 5 filesystems mt7620 vmallocinfo
164 212 6 fs mtd vmstat
17 22 7 interrupts net zoneinfo
172 226 76 iomem nvram
175 23 8 ioports pagetypeinfo
18 261 82 irq partitions
180 263 9 kcore self
19 265 buddyinfo kmsg softirqs
admin@RT-AC53:/proc# cat uptime
1746.00 1673.66
admin@RT-AC53:/proc# cat loadavg
0.07 0.07 0.02 1/47 432
admin@RT-AC53:/proc# cat cpuinfo
system type: MT7620
processor: 0
cpu model: MIPS 24Kc V5.0
BogoMIPS: 386.04
wait instruction: yes
microsecond timers: yes
tlb_entries: 32
extra interrupt vector: yes
hardware watchpoint: yes, count: 4, address/irw mask:
ASEs implemented: mips16 dsp
shadow register sets: 1
core: 0
VCED exceptions: not available
VCEI exceptions: not available
admin@RT-AC53:/proc# uptime
03:29:19 up 29 min, load average: 0.05, 0.06, 0.02

Нельзя не упомянуть и об утилите nvram, позволяющей изменять важные параметры работы устройства.

Admin@RT-AC53:/# nvram
usage: nvram
admin@RT-AC53:/# nvram show | grep admin

http_username=admin
admin@RT-AC53:/# nvram show | grep password
size: 20283 bytes (41157 left)
http_passwd=password
admin@RT-AC53:/#

Так, например, с помощью утилиты nvram можно отключить протокол STP на LAN-портах RT-AC53.

Admin@RT-AC53:/# nvram show | grep stp
size: 20283 bytes (41157 left)
lan_stp=1
lan1_stp=1
admin@RT-AC53:/# nvram set lan_stp=0
admin@RT-AC53:/# nvram commit
admin@RT-AC53:/# nvram show | grep stp
size: 20283 bytes (41157 left)
lan_stp=0
lan1_stp=1
admin@RT-AC53:/#

На этом рассмотрение возможностей интерфейса командной строки завершается, перейдём к тестированию устройства.

Тестирование

Первым тестом, с которого мы традиционно начинаем данный раздел, является измерение времени загрузки маршрутизатора, под которым мы понимаем интервал времени между моментом подачи питания на устройство до получения первого эхо-ответа по протоколу ICMP. Беспроводной маршрутизатор ASUS RT-AC53 загружается за 42 секунды, мы считаем это хорошим результатом.

Вторым не менее традиционным тестом стала проверка защищённости устройства, проводимая со стороны LAN-порта с помощью сканера сетевой безопасности Positive Technologies XSpider 7.8. Всего было найдено девять открытых портов. Наиболее интересная обнаруженная информация представлена ниже.

Перед тем, как непосредственно перейти к нагрузочному тестированию, нам бы хотелось познакомить читателя с основными параметрами нашего тестового стенда.

Компонент ПК Ноутбук
Материнская плата ASUS Maximus VIII Extreme ASUS M60J
Процессор Intel Core i7 6700K 4 ГГц Intel Core i7 720QM 1.6 ГГц
Оперативная память DDR4-2133 Samsung 64 Гбайта DDR3 PC3-10700 SEC 16 Гбайт
Сетевая карта Intel PRO/1000 PT
ASUS PCE-AC88
Atheros AR8131
ASUS RT-AC88U
Операционная система Windows 7 x64 SP1 Rus Windows 7 x64 SP1 Rus

Начать тесты производительности устройства мы решили с измерения скорости маршрутизации с NAT/PAT со включённым аппаратным ускорением (настройка по умолчанию). Измерения проводились для одного, пяти и пятнадцати одновременных TCP-соединений. Результаты теста представлены на диаграмме ниже.

Как следует из результатов данного теста, маршрутизация производится на скорости среды, процессор устройства при этом остаётся не нагруженным. Единственное, что хотелось бы отметить, так это ограничение при работе в полном дуплексе: суммарная скорость передачи данных в обоих направлениях не превышала 1 Гбит/с, что, по нашему мнению, связано с внутренней разводкой устройства.

Мы решили отключить аппаратное ускорение и повторить предыдущие измерения. Ограничение скоростей в данном тесте обусловлено производительностью центрального процессора маршрутизатора.

При выполнении классической маршрутизации без NAT аппаратное ускорение не используется, поэтому полученные в результате эксперимента скорости схожи с теми, что мы получили в предыдущем опыте.

Для жителей постсоветского пространства актуальным способом подключения к сети интернет является использование разнообразных туннелей (VPN). Мы решили измерить производительность беспроводного маршрутизатора при работе с двумя типами таких туннелей: PPTP и L2TP. ASUS RT-AC53 поддерживает как шифрованные (MPPE128), так и нешифрованные туннели PPTP.

Продолжить проводные тесты мы решили измерением производительности модели ASUS RT-AC53 при работе со следующей версией протокола IP – IPv6.

Обработка пакетов IPv6 производится центральным процессором, поэтому ограничение скоростей обусловлено производительностью последнего, то есть при передаче IPv6-трафика со скоростью около 200 Мбит/с загрузка процессора составляла 100%.

Беспроводной маршрутизатор ASUS RT-AC53 обладает возможностью обеспечения качества обслуживания передаваемого трафика. Так, например, можно настроить ограничение максимальной полосы пропускания, доступной определённому устройству. Мы решили выяснить, насколько соответствует реальная скорость передачи пользовательских данных настроенному значению. На графике ниже представлены три кривые: синяя соответствует сконфигурированным значениям, зелёная – трафику, передаваемому от абонента в интернет, а красная – в обратном направлении.

Для скоростей примерно до 150 Мбит/с получаемые значения неплохо соответствуют сконфигурированным, однако начиная с этой скорости рост доступной пользователю полосы пропускания прекращается, что опять же обусловлено производительностью центрального процессора устройства, - для обеспечения поддержки QoS используется ЦПУ. Все устройства, для которых не сконфигурировано правило ограничения скорости при включённом QoS, получают полосу около 175 Мбит/с. Стоит отметить, что мы не считаем обнаруженные ограничения проблемой, так как использование механизмов QoS обычно требуется при относительно низких скоростях доступа к глобальной сети, а большинство провайдеров в России не предлагает тарифы со скоростью выше 100 Мбит/с.

Механизмы обеспечения QoS – не единственные средства, позволяющие ограничить скорость передаваемого пользователями трафика. Речь идёт о настройках, расположенных во вкладке «Switch Control» пункта меню «Локальная сеть». Правда, здесь стоит говорить, скорее, о защитных механизмах, позволяющих стабилизировать работу сети в случаях, когда, например, сетевая карта одного из ПК вышла из строя и отправляет большое количество ошибочных фреймов. Мы не могли не протестировать работу данного механизма на примере ограничения Unknown Unicast фреймов. Измерения проводились до скоростей в 700 Мбит/с – механизм ограничения отлично справлялся с генерируемым нашим тестовым ПК трафиком. Похоже, такой Storm Control в модели RT-AC53 реализован аппаратно. Тут, правда, нельзя не сказать о ложке дёгтя, которую мы обнаружили в процессе тестирования. Если выставить ограничения достаточно большими, то трафик, получатель которого не известен, при скорости около 500 Мбит/с приведёт к 100% загрузке процессора, поэтому мы крайне не рекомендуем пользователям изменять значения по умолчанию.

Наконец-то мы добрались и до беспроводных тестов. Измерения проводились при расположении маршрутизатора и клиента в непосредственной близости друг от друга, расстояние между ними составляло от одного до трёх метров. Сначала мы выяснили, какие скорости будут доступны пользователям, работающим в диапазоне 2.4 ГГц.

Следующим тестом стало измерение скоростей беспроводной передачи пользовательских данных в диапазоне 5 ГГц. Диапазон 5 ГГц продолжает пока ещё оставаться менее нагруженным по сравнению с диапазоном 2.4 ГГц, поэтому мы как всегда рекомендуем пользователям обратить на него своё самое пристальное внимание.

В заключение данного раздела мы решили выяснить, до какой максимальной температуры нагревается корпус устройства при интенсивном использовании. Температуру корпуса беспроводного маршрутизатора ASUS RT-AC53 мы измеряли с помощью нашего лабораторного пирометра ADA TempPro-2200. Максимальные значение следующие: верхняя панель – 37°С, нижняя панель – 41°С. Во время измерений температура в комнате составляла 25°С.

На этом мы заканчиваем раздел тестирования и переходим к подведению итогов.

Заключение

Мы остались довольны протестированным беспроводным маршрутизатором ASUS RT-AC53. Данная модель относится к классу бюджетных решений: не стоит ожидать от неё рекордных скоростей или максимального набора функций. Однако большинству домашних пользователей функциональности RT-AC53 будет более чем достаточно. Для подключения к сети интернет одного стационарного компьютера, телевизионной приставки да нескольких ноутбуков с телефонами, не требуется приобретать сетевого монстра, - достаточно обычного недорогого беспроводного маршрутизатора. Модель ASUS RT-AC53 как раз и является таким решением – ничего лишнего, только всё самое необходимое.

Сильные стороны беспроводного маршрутизатора ASUS RT-AC53 перечислены ниже:

  • хорошие скорости передачи трафика в обоих беспроводных диапазонах;
  • наличие механизмов обеспечения QoS;
  • поддержка до трёх гостевых сетей в каждом беспроводном диапазоне;
  • хорошие скорости обработки IPv6-трафика;
  • возможность ограничения времени пользования сетью интернет клиентом (родительский контроль);
  • наличие встроенного PPTP-клиента и сервера;
  • возможность ограничения скоростей передачи нежелательного трафика в LAN;
  • приемлемая цена.

К сожалению, мы не можем не перечислить и недостатки устройства:

  • веб-интерфейс переведён не полностью;
  • всего два LAN-порта.

На момент написания данного обзора средняя цена на беспроводной маршрутизатор ASUS RT-AC53 в интернет-магазинах Москвы составляла 3700 рублей.

Раз вы сюда попали, скорее всего вам нужно поменять TTL для обхода ограничений мобильного оператора на раздачу трафика, но вы не понимаете, что такое TTL, и зачем его менять. Постараюсь объяснить.

Понятие TTL

В интернете все передается пакетами – маленькими порциями данных. Они ходят от маршрутизатора к маршрутизатору (то же самое, что от роутера к роутеру) по узлам сети. Например, ваш мобильный телефон тоже может стать роутером, если его использовать для раздачи данных на компьютер и другие устройства.

TTL расшифровывается как Time To Live, то есть время жизни пакета данных в секундах. При прохождении пакета через очередной роутер TTL уменьшается на единицу. Нужно это для того, чтобы пакет бесконечно не гулял по сети, если не сможет дойти до адресата. Роутер, при попадании в который пакет исчерпал свое значение TTL, посылает отправителю сообщение ICMP о том, что данный пакет превысил максимально допустимое время своего пребывания в сети. Максимальное значение TTL=255. Причем разные операционные системы генерируют пакеты с разным TTL.

Если говорить совсем простыми словами…
Представьте себе, что вам 5 лет и вы хотите кушать (вы – пакет). Вы идете к папе и говорите: «Папа, я хочу кушать». Ваш папа смотрит телевизор, согласно таблице маршрутизации о посылает вас к маме. Вы идете к ней и просите «Мамааа, я хочу кушать». Мама болтает с подругой по телефону и согласно своей таблице маршрутизации посылает вас к папе. И так вы ходите как дурак от папы к маме и обратно, туда-сюда, туда-сюда, а все потому что криворукие админы (родители папы и мамы) неправильно настроили таблицу маршрутизации. Чтобы защититься от таких ситуаций придумали понятие TTL (Time To Live), что применительно к нашей ситуации означает количество терпения у мальчика, пока он не скажет «достало» и не упадет перед ногами мамы или папы в беспомощном состоянии. Последний, по правилам (стандарты – это «так заведено в семье»), обязан послать короткий нелестный отзыв адрес того, кто послал мальчика кушать. Это так называемый ICMP-пакет «мальчик сдох»

Ок, так при чем тут операторы? Дело в том, что по полученным от абонента TTL оператор узнает, раздается интернет или нет.

Как операторы узнают, что трафик раздается

Потому что ему от абонента начинают приходить пакеты с разными значениями TTL. На это есть две причины:

  • Во-первых, у разных устройств TTL может быть разным. А при раздаче интернета появляется ведь второе устройство – то, на которое мы раздаем интернет. Так у телефона на iOS или Android значение TTL равно 64, а у компьютера на Windows – 128. И при раздаче интернета с телефона на компьютер появится два разных значения TTL: 64 и 128. Оператору уходят пакеты и с TTL=64, и TTL=127 (при отправке пакета с компьютера через раздающий телефон-роутер значение 128 уменьшается на единицу).
  • Во-вторых, даже если TTL устройств одинаков (с телефона на телефон), раздающий телефон опять же уменьшает TTL на 1 как всякий нормальный роутер. И оператору уходят пакеты с разными значениями TTL=64 (если это пакет с раздающего телефона) и TTL=63 (пакет с потребляющего телефона).

Итак оператор получает пакеты с разными значениями:

  • TTL пакета с самого телефона.
  • TTL пакета с потребляющего трафик устройства, уменьшенное на единицу при проходе через телефон-роутер.

На всякий случай прикладываю картинки.

А при раздаче интернета телефон передает оператору пакеты с тремя разными значениями TTL: 64 от себя, 127 от компьютера и 63 от потребляющего телефона.

Оператор замечает такую ситуацию разброса значений TTL, делает вывод, что происходит раздача трафика и принимает карательные меры в отношении абонента-нарушителя, желающего поживиться безлимитным интернетом на полную катушку, раздав его куда хочется. Как же скрыть раздачу от оператора? Очевидно, надо сравнять TTL – привести их всех к одному значению. Для этого можно

  1. Либо поменять TTL на потребляющем устройстве,
  2. Либо на раздающем телефоне сделать так, чтобы пакеты к оператору шли всегда с одним значением TTL.

Приведение TTL к единому значению для обхода ограничений оператора

  • Можно привести TTL к единому значению 63, поменяв его на раздающем телефоне и на принимающем компьютере. Это изменение TTL без фиксации.

  • Можно ничего не менять на принимающих устройствах, но «заставить» раздающий телефон всегда отправлять оператору пакеты с TTL=63, независимо от того, откуда они: с самого раздающего телефона или с принимающего устройства (компьютера или телефона). Это фиксация TTL.

Вторая схема удобнее, но она пригодна не для всех телефонов.

Итак, мы рассмотрели, что такое TTL, и зачем его нужно менять. Как именно изменить TTL требует рассмотрения в отдельной статье. .

Похожие публикации