Минор и алгебраическое дополнение элемента определителя. Алгебраические дополнения и миноры. Виды миноров и алгебраических дополнений. Методические рекомендации по выполнению внеурочной самостоятельной работы студента Дисциплина «Математика» для специальн

Минором любого элемента определителя называется, определитель второго

порядка, полученный вычеркиванием из данного определителя строки и столбца, содержащих этот элемент. Так минор для элемента

для элемента :

Алгебраическим дополнением любого элемента определителя называют минор этого элемента взятый с множителем , где i – номер строки элемента, j – номер столбца. Таким образом, алгебраическое дополнение элемента :

Пример. Найти алгебраические дополнения для элементов определителя.

Теорема . Определитель равен сумме произведений элементов любого его столбца или строки на их алгебраические дополнения.

Другими словами, имеют место следующие равенства для определителя .

Доказательство этих равенств состоит из замены алгебраических дополнений их выражениями через элементы определителя, при этом получим выражение (3). Предлагается это выполнить самостоятельно. Замена определителя по одной из шести формул называется разложением определителя по элементам соответствующего столбца или строки. Эти разложения применяют для вычисления определителей.

Пример. Вычислить определитель, разложив его по элементам второго столбца.

Используя теорему о разложении определителя третьего порядка по элементам строки или столбца, можно доказать справедливость свойств 1-8 для определителей третьего порядка. Предполагается проверить справедливость этого утверждения. Свойства определителей и теорема о разложении определителя по элементам столбца или строки позволяют упростить вычисления определителей.

Пример . Вычислить определитель.

Вычислим общий множитель «2» элементов второй строки, а затем такой же общий множитель элементов третьего столбца.

Прибавим элементы первой строки к соответствующим элементам второй строки, затем третьей строки.

Разложим определитель по элементам первого столбца.

Продолжаем разговор о действиях с матрицами. А именно – в ходе изучения данной лекции вы научитесь находить обратную матрицу. Научитесь. Даже если с математикой туго.

Что такое обратная матрица? Здесь можно провести аналогию с обратными числами: рассмотрим, например, оптимистичное число 5 и обратное ему число . Произведение данных чисел равно единице: . С матрицами всё похоже! Произведение матрицы на обратную ей матрицу равно – единичной матрице , которая является матричным аналогом числовой единицы. Однако обо всём по порядку – сначала решим важный практический вопрос, а именно, научимся эту самую обратную матрицу находить.

Что необходимо знать и уметь для нахождения обратной матрицы? Вы должны уметь решать определители . Вы должны понимать, что такое матрица и уметь выполнять некоторые действия с ними.

Существует два основных метода нахождения обратной матрицы:
с помощью алгебраических дополнений и с помощью элементарных преобразований .

Сегодня мы изучим первый, более простой способ.

Начнем с самого ужасного и непонятного. Рассмотрим квадратную матрицу . Обратную матрицу можно найти по следующей формуле :

Где – определитель матрицы , – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

Понятие обратной матрицы существует только для квадратных матриц , матриц «два на два», «три на три» и т.д.

Обозначения : Как вы уже, наверное, заметили, обратная матрица обозначается надстрочным индексом

Начнем с простейшего случая – матрицы «два на два». Чаще всего, конечно, требуется «три на три», но, тем не менее, настоятельно рекомендую изучить более простое задание, для того чтобы усвоить общий принцип решения.

Пример:

Найти обратную матрицу для матрицы

Решаем. Последовательность действий удобно разложить по пунктам.

1) Сначала находим определитель матрицы .

Если с пониманием сего действа плоховато, ознакомьтесь с материалом Как вычислить определитель?

Важно! В том случае, если определитель матрицы равен НУЛЮ – обратной матрицы НЕ СУЩЕСТВУЕТ .

В рассматриваемом примере, как выяснилось, , а значит, всё в порядке.

2) Находим матрицу миноров .

Для решения нашей задачи не обязательно знать, что такое минор, однако, желательно ознакомиться со статьей Как вычислить определитель .

Матрица миноров имеет такие же размеры, как и матрица , то есть в данном случае .
Дело за малым, осталось найти четыре числа и поставить их вместо звездочек.

Возвращаемся к нашей матрице
Сначала рассмотрим левый верхний элемент:

Как найти его минор ?
А делается это так: МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:

Оставшееся число и является минором данного элемента , которое записываем в нашу матрицу миноров:

Рассматриваем следующий элемент матрицы :

Мысленно вычеркиваем строку и столбец, в котором стоит данный элемент:

То, что осталось, и есть минор данного элемента, который записываем в нашу матрицу:

Аналогично рассматриваем элементы второй строки и находим их миноры:


Готово.

Это просто. В матрице миноров нужно ПОМЕНЯТЬ ЗНАКИ у двух чисел:

Именно у этих чисел, которые я обвел в кружок!

– матрица алгебраических дополнений соответствующих элементов матрицы .

И всего-то лишь…

4) Находим транспонированную матрицу алгебраических дополнений .

– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

5) Ответ .

Вспоминаем нашу формулу
Всё найдено!

Таким образом, обратная матрица:

Ответ лучше оставить в таком виде. НЕ НУЖНО делить каждый элемент матрицы на 2, так как получатся дробные числа. Более подробно данный нюанс рассмотрен в той же статье Действия с матрицами .

Как проверить решение?

Необходимо выполнить матричное умножение либо

Проверка:

Получена уже упомянутая единичная матрица – это матрица с единицами на главной диагонали и нулями в остальных местах.

Таким образом, обратная матрица найдена правильно.

Если провести действие , то в результате тоже получится единичная матрица. Это один из немногих случаев, когда умножение матриц перестановочно, более подробную информацию можно найти в статье Свойства операций над матрицами. Матричные выражения . Также заметьте, что в ходе проверки константа (дробь) выносится вперёд и обрабатывается в самом конце – после матричного умножения. Это стандартный приём.

Переходим к более распространенному на практике случаю – матрице «три на три»:

Пример:

Найти обратную матрицу для матрицы

Алгоритм точно такой же, как и для случая «два на два».

Обратную матрицу найдем по формуле: , где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

1) Находим определитель матрицы .


Здесь определитель раскрыт по первой строке .

Также не забываем, что , а значит, всё нормально – обратная матрица существует .

2) Находим матрицу миноров .

Матрица миноров имеет размерность «три на три» , и нам нужно найти девять чисел.

Я подробно рассмотрю парочку миноров:

Рассмотрим следующий элемент матрицы:

МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:

Оставшиеся четыре числа записываем в определитель «два на два»

Этот определитель «два на два» и является минором данного элемента . Его нужно вычислить:


Всё, минор найден, записываем его в нашу матрицу миноров:

Как вы, наверное, догадались, необходимо вычислить девять определителей «два на два». Процесс, конечно, муторный, но случай не самый тяжелый, бывает хуже.

Ну и для закрепления – нахождение еще одного минора в картинках:

Остальные миноры попробуйте вычислить самостоятельно.

Окончательный результат:
– матрица миноров соответствующих элементов матрицы .

То, что все миноры получились отрицательными – чистая случайность.

3) Находим матрицу алгебраических дополнений .

В матрице миноров необходимо СМЕНИТЬ ЗНАКИ строго у следующих элементов:

В данном случае:

Нахождение обратной матрицы для матрицы «четыре на четыре» не рассматриваем, так как такое задание может дать только преподаватель-садист (чтобы студент вычислил один определитель «четыре на четыре» и 16 определителей «три на три»). В моей практике встретился только один такой случай, и заказчик контрольной работы заплатил за мои мучения довольно дорого =).

В ряде учебников, методичек можно встретить несколько другой подход к нахождению обратной матрицы, однако я рекомендую пользоваться именно вышеизложенным алгоритмом решения. Почему? Потому что вероятность запутаться в вычислениях и знаках – гораздо меньше.

определителя по элементам строки или столбца

Дальнейшие свойства связаны с понятиями минора и алгебраического дополнения

Определение. Минором элемента называется определитель, составленный из элементов, оставшихся после вычеркивания i -ой стоки и j -го столбца, на пересечении которых находится этот элемент. Минор элемента определителяn -го порядка имеет порядок (n - 1). Будем его обозначать через .

Пример 1. Пусть , тогда.

Этот минор получается из A путём вычёркивания второй строки и третьего столбца.

Определение. Алгебраическим дополнением элемента называется соответствующий минор, умноженный нат.е, где i –номер строки и j -столбца, на пересечении которых находится данный элемент.

V ІІІ. (Разложение определителя по элементам некоторой строки). Определитель равен сумме произведений элементов некоторой строки на соответствующие им алгебраические дополнения.

.

Пример 2. Пусть , тогда

.

Пример 3. Найдём определитель матрицы , разложив его по элементам первой строки.

Формально эта теорема и другие свойства определителей применимы пока только для определителей матриц не выше третьего порядка, поскольку другие определители мы не рассматривали. Следующее определение позволит распространить эти свойства на определители любого порядка.

Определение. Определителем матрицы A n-го порядка называется число, вычисленное с помощью последовательного применения теоремы о разложении и других свойств определителей .

Можно проверить, что результат вычислений не зависит от того, в какой последовательности и для каких строк и столбцов применяются вышеуказанные свойства. Определитель с помощью этого определения находится однозначно.

Хотя данное определение и не содержит явной формулы для нахождения определителя, оно позволяет находить его путём сведения к определителям матриц меньшего порядка. Такие определения называют рекуррентными.

Пример 4. Вычислить определитель: .

Хотя теорему о разложении можно применять к любой строке или столбцу данной матрицы, меньше вычислений получится при разложении по столбцу, содержащему как можно больше нулей.

Поскольку у матрицы нет нулевых элементов, то получим их с помощью свойства 7). Умножим первую строку последовательно на числа (–5), (–3) и (–2) и прибавим её ко 2-ой, 3-ей и 4-ой строкам и получим:

Разложим получившийся определитель по первому столбцу и получим:

(вынесем из 1-ой строки (–4), из 2-ой - (–2), из 3-ей - (–1) согласно свойству 4)

(так как определитель содержит два пропорциональных столбца).

§ 1.3. Некоторые виды матриц и их определители

Определение. Квадратная матрица, у которой ниже или выше главной диагонали стоят нулевые элементы (=0 при i j , или =0 при i j ) называется треугольной .

Их схематичное строение соответственно имеет вид: или.

Здесь 0 – означает нулевые элементы, а – произвольные элементы.

Теорема . Определитель квадратной треугольной матрицы равен произведению её элементов, стоящих на главной диагонали, т.е.

.

Например:

.

Определение. Квадратная матрица, у которой вне главной диагонали стоят нулевые элементы, называется диагональной .

Её схематический вид:

Диагональная матрица, у которой на главной диагонали стоят только единичные элементы называется единичной матрицей. Она обозначается через:

Определитель единичной матрицы равен 1, т.е. E=1.

Определение. Если в определителе n-го порядка выбрать произвольно k строк и k столбцов, то элементы, стоящие на пересечении указанных строк и столбцов, образуют квадратную матрицу порядка k. Определитель такой квадратной матрицы называют минором k-го порядка .

Обозначается M k . Если k=1, то минор первого порядка - это элемент определителя.

Элементы, стоящие на пересечении оставшихся (n-k) строк и (n-k) столбцов, составляют квадратную матрицу порядка (n-k). Определитель такой матрицы называется минором, дополнительным к минору M k . Обозначается M n-k .

Алгебраическим дополнением минора M k будем называть его дополнительный минор, взятый со знаком “+” или “-” в зависимости от того, четна или нечетна сумма номеров всех строк и столбцов, в которых расположен минор M k .

Если k=1, то алгебраическое дополнение к элементу a ik вычисляется по формуле

A ik =(-1) i+k M ik , где M ik - минор (n-1) порядка.

Теорема . Произведение минора k-го порядка на его алгебраическое дополнение равно сумме некоторого числа членов определителя D n .

Доказательство

1. Рассмотрим частный случай. Пусть минор M k занимает левый верхний угол определителя, то есть располагается в строках с номерами 1, 2, ..., k, тогда минор M n-k будет занимать строки k+1, k+2, ..., n.

Вычислим алгебраическое дополнение к минору M k . По определению,

A n-k =(-1) s M n-k , где s=(1+2+...+k) +(1+2+...+k)= 2(1+2+...+k), тогда

(-1) s =1 и A n-k = M n-k . Получим

M k A n-k = M k M n-k . (*)

Берем произвольный член минора M k

где s - число инверсий в подстановке

и произвольный член минора M n-k

где s * - число инверсий в подстановке

Перемножая (1) и (3), получим

Произведение состоит из n элементов, расположенных в различных строках и столбцах определителя D. Следовательно, это произведение является членом определителя D. Знак произведения (5) определяется суммой инверсий в подстановках (2) и (4), а знак аналогичного произведения в определителе D определяется числом инверсий s k в подстановке

Очевидно, что s k =s+s * .

Таким образом, возвращаясь к равенству (*), получим, что произведение M k A n-k состоит только из членов определителя.

2. Пусть минор M k расположен в строках с номерами i 1 , i 2 , ..., i k и в столбцах с номерами j 1 , j 2 , ..., j k , причем i 1 < i 2 < ...< i k и j 1 < j 2 < ...< j k .

Используя свойства определителей, с помощью транспозиций сместим минор в левый верхний угол. Получим определитель D ¢ , в котором минор M k занимает левый верхний угол, а дополнительный к нему минор M¢ n-k - правый нижний угол, тогда, по доказанному в пункте 1, получим, что произведение M k n-k является суммой некоторого количества элементов определителя D ¢ , взятых со своим знаком. Но D ¢ получен из D с помощью (i 1 -1)+(i 2 -2)+ ...+(i k -k)=(i 1 + i 2 + ...+ i k)-(1+2+...+k) транспозиций строк и (j 1 -1)+(j 2 -2)+ ...+(j k -k)=(j 1 + j 2 + ...+ j k)- (1+2+...+k) транспозиций столбцов. То есть всего было выполнено


(i 1 + i 2 + ...+ i k)-(1+2+...+k)+ (j 1 + j 2 + ...+ j k)- (1+2+...+k)= (i 1 + i 2 + ...+ i k)+ (j 1 + j 2 + ...+ j k)- 2(1+2+...+k)=s-2(1+2+...+k). Поэтому члены определителей D и D ¢ отличаются знаком (-1) s-2(1+2+...+k) =(-1) s , следовательно, произведение (-1) s M k n-k будет состоять из некоторого количества членов определителя D, взятых с теми же знаками, какие они имеют в этом определителе.

Теорема Лапласа . Если в определителе n-го порядка выбрать произвольно k строк (или k столбцов) 1£k£n-1, тогда сумма произведений всех миноров k-го порядка, содержащихся в выбранных строках, на их алгебраические дополнения равна определителю D.

Доказательство

Выберем произвольно строки i 1 , i 2 , ..., i k и докажем, что

Ранее было доказано, что все элементы в левой части равенства содержатся в качестве слагаемых в определителе D. Покажем, что каждый член определителя D попадает только в одно из слагаемых . Действительно, всякое t s имеет вид t s = . если в этом произведении отметить сомножители, у которых первые индексы i 1 , i 2 , ..., i k , и составить их произведение , то можно заметить, что полученное произведение принадлежит минору k-го порядка. Следовательно, оставшиеся члены, взятые из оставшихся n-k строк и n-k столбцов, образуют элемент, принадлежащий дополнительному минору, а с учетом знака - алгебраическому дополнению, следовательно, любое t s попадает только в одно из произведений , что доказывает теорему.

Следствие (теорема о разложении определителя по строке). Сумма произведений элементов некоторой строки определителя на соответствующие алгебраические дополнения равна определителю.

(Доказательство в качестве упражнения.)

Теорема . Сумма произведений элементов i-ой строки определителя на соответствующие алгебраические дополнения к элементам j-ой строки (i¹j) равна 0.

Замечание . Удобно применять следствие из теоремы Лапласа к определителю, преобразованному с помощью свойств таким образом, что в одной из строк (или в одном из столбцов) все элементы, кроме одного, равны 0.

Пример. Вычислить определитель

12 -14 +35 -147 -20 -2= -160.

    Алгебраическое дополнение - понятие матричной алгебры; применительно к элементу aij квадратной матрицы А образуется путем умножения минора элемента aij на (1)i+j; обозначается Аij: Aij=(1)i+jMij, где Mij минор элемента aij матрицы A=, т.е. определитель… … Экономико-математический словарь

    алгебраическое дополнение - Понятие матричной алгебры; применительно к элементу aij квадратной матрицы А образуется путем умножения минора элемента aij на (1)i+j; обозначается Аij: Aij=(1)i+jMij, где Mij минор элемента aij матрицы A=, т.е. определитель матрицы,… … Справочник технического переводчика

    См. в ст. Определитель … Большая советская энциклопедия

    Для минора М число, равное где М минор порядка k, расположенный в строках с номерами и столбцах с номерами некоторой квадратной матрицы Апорядка п; определитель матрицы порядка n k, полученной из матрицы Авычеркиванием строк и столбцов минора М;… … Математическая энциклопедия

    В Викисловаре есть статья «дополнение» Дополнение может означать … Википедия

    Операция, к рая ставит в соответствие подмножеству Мданного множества Xдругое подмножество так, что если известны Ми N, то тем или иным способом может быть восстановлено множество X. В зависимости от того, какой структурой наделено множество X,… … Математическая энциклопедия

    Или детерминант, в математике запись чисел в виде квадратной таблицы, в соответствие которой ставится другое число (значение определителя). Очень часто под понятием определитель имеют в виду как значение определителя, так и форму его записи.… … Энциклопедия Кольера

    О теореме из теории вероятностей см. статью Локальная теорема Муавра Лапласа. Теорема Лапласа одна из теорем линейной алгебры. Названа в честь французского математика Пьера Симона Лапласа (1749 1827), которому приписывают формулирование… … Википедия

    - (Laplacian matrix) одно из представлений графа с помощью матрицы. Матрица Кирхгофа используется для подсчета остовных деревьев данного графа (матричная теорема о деревьях), а также используется в спектральной теории графов. Содержание 1… … Википедия

    Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… … Энциклопедия Кольера

Книги

  • Дискретная математика , А. В. Чашкин. 352 стр. Учебник состоит из 17 глав по основным разделам дискретной математики: комбинаторному анализу, теории графов, булевым функциям, сложности вычисления и теории кодирования. Содержит…
Похожие публикации